Bonjour, J'ai un dm de math a faire mais je n'y arrive pas pourriez vous m'aider? Anne a besoin de prendre le train pour se rendre à son travail cinq fois par
Mathématiques
Lintellect8885
Question
Bonjour, J'ai un dm de math a faire mais je n'y arrive pas pourriez vous m'aider?
Anne a besoin de prendre le train pour se rendre à son travail cinq fois par semaine et 47 semaines par an. La sncf lui propose les deux formules suivantes:
Formule 1 : Le prix du billet est fixé à 12€ par trajet
Formule 2: Forfait à 1080€ par an et 75% de réduction sur le prix du billet de la formule n°1.
On note x le nombre de trajets par mois effectués par Anne.
1) Donner le prix de la formule n°1 pour un mois en fonction du nombre de trajets.
2) Donner le prix de la formule n°2 Pour un mois en fonction du nombre de trajets.
3) Combien de trajets doit elle effectuer au minimum par mois pour que la formule n°2 soit plus intéressante? Quelle formule a t elle intérêt de choisir ?
4) Calculer alors l'économie réalisée par Anne sur un an par rapport à la formule n°1 ?
Voilà j'espère avoir une réponse
Merci
Anne a besoin de prendre le train pour se rendre à son travail cinq fois par semaine et 47 semaines par an. La sncf lui propose les deux formules suivantes:
Formule 1 : Le prix du billet est fixé à 12€ par trajet
Formule 2: Forfait à 1080€ par an et 75% de réduction sur le prix du billet de la formule n°1.
On note x le nombre de trajets par mois effectués par Anne.
1) Donner le prix de la formule n°1 pour un mois en fonction du nombre de trajets.
2) Donner le prix de la formule n°2 Pour un mois en fonction du nombre de trajets.
3) Combien de trajets doit elle effectuer au minimum par mois pour que la formule n°2 soit plus intéressante? Quelle formule a t elle intérêt de choisir ?
4) Calculer alors l'économie réalisée par Anne sur un an par rapport à la formule n°1 ?
Voilà j'espère avoir une réponse
Merci
1 Réponse
-
1. Réponse taalbabachir
Réponse :
1) donner le prix de la formule n°1 pour un mois en fonction du nombre de trajets
f(x) = 12 x = 12 * 20 = 240 €
2) donner le prix de la formule 2 pour un mois en fonction du nombre de trajets
g(x) = 1080 + 9 x = 1080 + 9*20 = 1260 €
3) combien de trajet doit-elle effectuer au minimum par mois pour que la formule n°2 soit plus intéressante ?
g(x) ≤ f(x) ⇔ 1080 + 9 x ≤ 12 x ⇔ 1080 ≤ 3 x ⇔ x ≥ 1080/3
⇒ x ≥ 360 elle doit effectuer au minimum 365 trajets pour que la formule n°2 soit plus intéressante
vu le nombre important de trajet, elle a intérêt de choisir la formule n°1
Explications étape par étape